Fekete Imre előadása a Farkas Miklós Alkalmazott Analízis Szemináriumon


We kindly invite you to the Miklós Farkas Seminar.


October 12 (Thursday) 10:15, BME H306


Imre Fekete (Eötvös Loránd University & MTA-ELTE NUMNET)

On the zero-stability of multistep methods on smooth nonuniform grids

In order to be convergent, linear multistep methods must be zero stable. While constant step size theory was established in the 1950's, zero stability on nonuniform grids is less well understood. Here we investigate zero stability on compact intervals and smooth nonuniform grids. The grid points are constructed as the image of an equidistant grid under a smooth deformation map. We show that for all strongly stable linear multistep methods, there is an N∗ such that a condition of zero stability is always fulfilled for N>N∗ under a smoothness condition. Examples are given for Adams and BDF type methods.


The organizers

(István Faragó, János Karátson, Róbert Horváth, Miklós Mincsovics)

Visit the homepage of the seminar: http://math.bme.hu/AlkAnalSzemi