2017. April 04.
MEGHÍVÓ
Szeretettel várjuk a Farkas Miklós Alkalmazott Analízis Szemináriumra
2017. április 6. (csütörtök) 10:15, BME H306
Liepa Bikulciene (Kaunasi Műszaki Egyetem, Litvánia)
The Operator method for differential equations solving can be applied in nonlinear dynamics for exact solutions finding. Starting from basics of this method and Hankel matrices ranks possibilities of evaluation of DE and special PDE solutions using MAPLE mathematical software will be introduced. Examples of solved ODE and PDE: Huxley, Liouville, KdV equations and their soliton solutions will be presented. It will be shown that special solitary solutions exist only on a line in the parameter plane of initial and boundary conditions. This result may lead to important findings in a variety of practical applications as nonlinear evolution equations in mathematical physics.
Joint work with Research Group for Mathematical and Numerical Analysis of Dynamical Systems https://nonlinear.fmf.ktu.lt/index.htm.
(The talk will be in English)
A szervezők
(Faragó István, Karátson János, Horváth Róbert, Mincsovics Miklós)
A szeminárium honlapja: http://math.bme.hu/AlkAnalSzemi