A Chaotic Linear Operator

Időpont: 
2017. 03. 30. 10:15
Hely: 
BME H épület 306-os terem
Előadó: 
Kiss Márton (BME Differenciálegyenletek Tanszék)

 

 

                                            

                                                   MEGHÍVÓ

          Szeretettel várjuk a Farkas Miklós Alkalmazott Analízis Szemináriumra

 

                            2017. március 30. (csütörtök) 10:15, BME H306

 

 

 

 

 

Előadó: Kiss Márton (BME Differenciálegyenletek Tanszék)

A Chaotic Linear Operator
 
Not just nonlinear systems, but infinite-dimensional linear systems can exhibit complex behavior. It has long been known that twice the backward shift on the space of square summable sequences $ l_2$ displays chaotic dynamics. We give an outline of the proof starting from Devaney's definition of chaos. Then we construct the corresponding operator on the space of periodic functions and provide its representation involving a principal value integral. We explicitly calculate its eigenfunctions, as well as its periodic points; and also provide examples of chaotic and unbounded trajectories. Joint work with Tamás Kalmár-Nagy.
(The talk will be in English.)
 
---------------------------------------------------------------------------------------------

A szervezők

(Faragó István, Karátson János, Horváth Róbert, Mincsovics Miklós)

A szeminárium honlapja: http://math.bme.hu/AlkAnalSzemi