Operator method in the theory of differential equations

Időpont: 
2017. 04. 06. 10:15
Hely: 
H. épület 306-os terem
Előadó: 
Liepa Bikulciene (Kaunasi Műszaki Egyetem, Litvánia)

 

                                                MEGHÍVÓ

    Szeretettel várjuk a Farkas Miklós Alkalmazott Analízis Szemináriumra

 

                              2017. április 6. (csütörtök) 10:15, BME H306

 

 

 

 

 

Liepa Bikulciene (Kaunasi Műszaki Egyetem, Litvánia)

Operator method in the theory of differential equations
 

The Operator method for differential equations solving can be applied in nonlinear dynamics for exact solutions finding. Starting from basics of this method and Hankel matrices ranks possibilities of evaluation of DE and special PDE solutions using MAPLE mathematical software will be introduced. Examples of solved ODE and PDE: Huxley, Liouville, KdV equations and their soliton solutions will be presented. It will be shown that special solitary solutions exist only on a line in the parameter plane of initial and boundary conditions. This result may lead to important findings in a variety of practical applications as nonlinear evolution equations in mathematical physics.

Joint work with Research Group for Mathematical and Numerical Analysis of Dynamical Systems https://nonlinear.fmf.ktu.lt/index.htm.

(The talk will be in English)

 
---------------------------------------------------------------------------------------------

A szervezők

(Faragó István, Karátson János, Horváth Róbert, Mincsovics Miklós)

A szeminárium honlapja: http://math.bme.hu/AlkAnalSzemi