Active set methods and the semismooth Newton method for convex quadratic programming

Időpont: 
2017. 05. 25. 14:15
Hely: 
BME H épület 306-os terem
Előadó: 
Philipp Hungerlaender és Franz Rendl

                                        

 

                                         Meghívó

           Szeretettel várunk minden kedves érdeklődőt a BME
                           Optimalizálás Szemináriumán!

 

 

 

Az előadás részletei:

Időpont: 2017. május 25-én (csütörtök), 14:15 órakor a H épület 306-os teremben

Előadók:

Philipp Hungerlaender and Franz Rendl  Alpen-Adria Universitaet Klagenfurt

Active set methods and the semismooth Newton method for convex quadratic programming

Summary:

The semismooth Newton method of Kunisch et al for bound constrained convex quadratic programming is extremely efficient, if it converges.Unfortunately, global convergence may fail in general.

We first present two variants to make it globally convergent, one uses recursion, the other a type of combinatorial line search. Both variants maintain the positive features of the SN-Method, and there does not seem to be a clear champion among the two.

Finally, we address modifications to make the SN-Method applicable to general convex quadratic problems, including linear equality constraints. First computational experiments look very encouraging.