A discrete variant of Farkas' Lemma, some related results, and homogeneous linear programming

Időpont: 
2018. 09. 27. 14:15
Hely: 
BME H. épület 306-os terem
Előadó: 
David Bartl

    

 

                                      MEGHÍVÓ

           Szeretettel meghívjuk David Bartl előadására

              az Optimalizálási Szeminárium keretében

            2018.09.27-én csütörtökön, 14:15-15:45 óráig

                 Helyszín: BME H épület 306 terem

 

 

A discrete variant of Farkas' Lemma, some related results, and homogeneous linear programming

 

Előadó: David Bartl (Department of Informatics and Mathematics School of Business Administration in Karviná Silesian University in Opava)

 

Abstract: The talk will present a discrete variant of Farkas' Lemma in the setting of a module over a linearly ordered commutative ring (such as the ring of the integer numbers, i.e. the discrete case; apart from the setting of a vector space over a linearly ordered field, which could be the continuous case).  We shall then present the corresponding discrete variants of some related results:  Tucker's Key Theorem, Motzkin's Theorem and Tucker's Theorem.  Finally, we shall discuss a possible aplication of the discrete variant of Farkas' Lemma in the duality theory of linear programming.  We shall introduce the concept of the homogeneous linear program, its dual problem, and mention that the strong duality holds.